Tabulate the ergm AIC and BIC
Examples
ergms <- get_ergms(
example_network,
preds = c("site", "genetic_sex")
)
#> Starting maximum pseudolikelihood estimation (MPLE):
#> Obtaining the responsible dyads.
#> Evaluating the predictor and response matrix.
#> Maximizing the pseudolikelihood.
#> Finished MPLE.
#> Evaluating log-likelihood at the estimate.
#>
#> Starting maximum pseudolikelihood estimation (MPLE):
#> Obtaining the responsible dyads.
#> Evaluating the predictor and response matrix.
#> Maximizing the pseudolikelihood.
#> Finished MPLE.
#> Evaluating log-likelihood at the estimate.
#>
#> Starting maximum pseudolikelihood estimation (MPLE):
#> Obtaining the responsible dyads.
#> Evaluating the predictor and response matrix.
#> Maximizing the pseudolikelihood.
#> Finished MPLE.
#> Evaluating log-likelihood at the estimate.
#>
#> Starting maximum pseudolikelihood estimation (MPLE):
#> Obtaining the responsible dyads.
#> Evaluating the predictor and response matrix.
#> Maximizing the pseudolikelihood.
#> Finished MPLE.
#> Evaluating log-likelihood at the estimate.
#>
ergms |> get_ergm_bic()
#> # A tibble: 4 × 3
#> Model AIC BIC
#> <chr> <dbl> <dbl>
#> 1 network ~ edges + nodemix('site') + nodemix('genetic_sex') 467. 504.
#> 2 network ~ edges + nodemix('site') 537. 565.
#> 3 network ~ edges + nodemix('genetic_sex') 578. 592.
#> 4 network ~ edges 640. 645.